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FOREWORD

This report describes an enhancement to the DYSMAS/E hydrocode which provides an
improved capability to simulate nonreflective boundary conditions. These conditions, which
minimize the disturbance created by the exiting of the explosive shock from the computational
domain, allow the DYSMAS/E code to be operated using a smaller mesh. Such a capability
should be of particular importance in reducing the computational requirements for a 3-D
simulation.
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CHAPTER 1
INTRODUCTION

A factor controlling the computational resources required to model an underwater explo-
sion is the extent of the mesh. Generally, the outer boundary of the computational domain
is located sufficiently far from the explosive to prevent the initial explosion shock from re-
flecting off of the boundary and arriving back at the vicinity of the explosion prior to the
end of the computation. Due to the relatively high speed of sound in water and the long
time scale of some of the phenomena of interest, such as bubble pulsing, the necessary mesh
domain can be very large. The issue of mesh sizing is particularly acute in three dimen-
sions where even a nominal mesh size in each direction can create a problem with taxing
computational requirements. One method of reducing the size of the computational mesh is
to employ far field boundary conditions which do not reflect incidence shocks. This would
allow the outer boundaries to be placed closer to the explosion, reducing the extent of the
mesh in each direction.

An examination of the literature for nonreflective boundary conditions (also termed
nontransmissive, radiating, and absorbing) indicates that this is a recurring problem which is
of interest to many fields. A recent review of the subject is provided by Givoli.! Literally
speaking, a nonreflecting boundary condition (NRBC) allows shocks and other disturbances to
pass out of the boundary of the computational domain without producing spurious reflections.
Such boundary conditions can be constructed for some problems of interest; for example,
a planar shock. However, it fails under circumstances where the outgoing shock or wave
creates an incoming disturbance.>* Additionally, NRBC are inappropriate when outgoing
disturbances interact mutually after leaving the computational domain and produce a reflection
which is incident on the computational domain.!

The implicit requirement underlying the application of NRBC is the absence of infor-
mation propagating into the computational domain at the nonreflecting boundary. However,
as pointed out by Thompson,?3 this is not the case for a spherical explosion, the problem of
primary interest in this report. Here the spherical structure of the shock requires that waves
pass into and out of any spherical surface inside the shock and imposition of a true NRBC
will produce unsatisfactory results.>> The objective of this study then, is to develop far field
boundary condition (FFBC) which allows the computational domain to be truncated without
introducing unacceptable errors into the solution.

Development of the FFBC is based on characteristics, such as that in References 2 and 3.
For nonlinear, hyperbolic problems which are of interest, signals travel along characteristic
surfaces in known directions and the correct formulation of any type of boundary condition
consists of replacing characteristics which emanate from outside the computational domain
with an appropriate constraint. In the case of a FFBC, the constraint defines the incoming



NSWCDD/TR-94/20

wave properties which are usually unknown and vary with different problems. For some
problems there are no incoming waves while in others, such waves must be approximated
or estimated using an asymptotic solution® or heuristics.

The objective of this work is to develop and validate FFBC for the DYSMAS/E code.57
The characteristic analysis necessary for formulating the FFBC is developed in Chapter 2,
while Chapter 3 discusses its specialization to far field boundaries, and Chapter 4 outlines
the numerical implementation for the DYSMAS/E algorithm. One-dimensional results are
given in Chapter 5 while the application to multiple dimensions is discussed in Chapter
6. Appendices A and B provide user instructions and a description of the code changes
necessary to implement the FFBC in DYSMAS/E. Numerical experiments with different
types of meshes are reviewed in Appendix C.
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CHAPTER 2
1-D CHARACTERISTIC ANALYSIS

The analysis is restricted to 1-D and includes the influence of gravity, g. The conser-
vation equations are:

dq 0g9
Ot +B8r =C M

p u p 0 —=
g= |ul; B= % U —pl-';C= g 2
s 0 0 0

with K; = (0p/0s), , and n = 0, 1, 2 for planar, cylindrical and spherical coordinates
respectively. Here the energy equation is replaced by the equivalent statement that entropy
is constant along streamlines. Finding the eigenvalues and left eigenvectors of:

where:

[M—B]=0 3)
yields:
do=w  1,=(0,0,1)
K;
A'i"—('u'.!—c)1 l+ _(67 p’ _Z—) (4)

do=(w—c)l= (—-—c, o, _ﬁ)

The characteristic equations arise by multiplying Equation (1) by 1, and using1,B = A,l,
which yields:

0q dq]
l"[at +)‘“E =1,C. 5)

Evaluating this equation for each pair of (1,,A,) results in the characteristic equations:

o 0], [op_ 0] _ e

| Ot pcat] +/\—[6r-pcar] =TTy 8 ©
[ Os ds

5] <[] -1 ‘7’
[3p Ou dp u]  mpuc® :

B + cht'] +As [5 + ‘0657] =—-——%cpg ®

Figure 1 illustrates the direction of applicability of each of these characteristic relations. Note
that if a far field boundary is located at r;, where the computational domain consists of 1

<r <1, Equation (6) must be modified to account for the absence of information outside
of the computational domain.
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CHAPTER 3
FAR FIELD BOUNDARY CONDITIONS FOR 1-D FLOWS

Equations (6), (7) and (8) can be used to advance the flow properties at points interior
to the computational domain. To accomplish this, these equations are written in the form:

[ Op du
5 Pc'ﬁ] =Q-—cpg ®
[ s
=1 = 1
E t] Qo (10)
[ Op u]
¢ + PCE] = Q4+ +cpg an
where:
_ Op Ou npuc
Q- =—A- [31‘ B pcar] Ty (12)
0s
o= [2] »
_ Op oul npuc?
Qe =—A4 [5;4' Pca—r] - (14)
Simultaneous solutions of Equations (9) to (11), using Equations (12), (13) and (14) to

evaluate the right hand sides, produces %%, %% and g—j which can be used to update p, u, s

and hence the flow field. Each characteristic is associated with the particular direction given
in Figure 1 and it is necessary to respect that direction when evaluating the r derivatives
of the related Q. Otherwise, information is being taken from the wrong direction and the
calculation is likely to be unstable. A first order evaluation of the r derivatives results in
the following expressions:

i) sl oy e e g
o = neel (pz.+1 pz.) _ c(“f“ u',) 15)
i (7':-1-1 - Tz) ("'1+1 - 7':)
8i—8i—1 u > 0
Qo = { Ay (16)
crre A
.. . ms .y
Q4 = _an'U:zCz + (Pz Pf—l) + c(u: u.,—l) (17)
L (Tz - 7':—1) (7': - Tz—l)

At any boundary, the characteristic relations oﬁginating outside of the computational
domain can not be evaluated; there is no information at i+1 to compute the r derivative with.
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This relation must be replaced with another constraint. In the case of flow against a solid
wall, the characteristic relation originating outside of the computational domain is replaced
with the u = 0 constraint. At a far field boundary, one or more of Equations (9) to (11)
may be invalid. The number of invalid equations is determined by the velocity and speed
of sound at the boundary. As is indicated in Figure 1, the orientation of the characteristics
changes as these parameters vary. If the computational domain is the interval r; <1 <1y,
then the possibilities are as follows:

1. Supersonic outflow

a. atr: (u>c), all equations are valid;
b. atr: ( —c > u ), all equations valid.

2. Subsonic outflow
a. atr: (c2u>0), Equation (9) invalid;
b. atr: (0=u>—c), Equation (11) invalid.
3. Subsonic inflow:
a. atr: (02=u>—c), Equations (9) and (10) invalid;
b. atr: (c=u>0), Equations (10) and (11) invalid;
4. Supersonic inflow:
a. atr: { —c =2 u ), Equations (9), (10) and.(11) are invalid;
b. atr: (u2c), Equation (9), (10) and (11) invalid;

Far field boundaries are distant enough from the explosion to preclude supersonic flow
and hence the situation of interest is subsonic outflow or inflow. These cases require the
replacement of either one and two characteristic relations.

By definition, a truly non-reflecting boundary condition presumes that the incoming wave
amplitude is zero.> This assumption implies that for outflow:

dp du
at rr [6_1' - pca—r] =0
(18)
tr -a—‘q—l- ca—u =0
BT T | T
which reduces Q4 to:
el
atry: Q- = e
T (19)
atry: Q= —nic i

This condition is likely to be fulfilled only under very special circumstances such as a
uniform, gravity free flow, (n =0, g=0). The spherical explosion case features varying
conditions behind the shock and does not satisfy this constraint. Under these circumstances,
a replacement to Equation (9) must be constructed by other means. In the case of inflow,

5
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Equation (10) is also invalid. This poses less of a problem since the flow is nearly isentropic
at a far field boundary which implies @, ~ constant.

Hagstrom and Harigan® have constructed asymptotic approximations to the deleted
portion of the flow field which resides outside of the far field boundary. In particular,
three different solutions are obtained which provide the following definitions for the Q value
associated with the invalid equation: '

__ pCtoote '

Qx = R (20)
_ _pccooE‘ P

Qx= R ln(p«;) 21)
_ Pl s

Qs = 5R (u+cln(poo)> | (22)

To arrive at Equation (21) and (22), from‘the form given by Reference 5, the following
approximation has been introduced:

P
P _ in (—"-) (23)

p Poo
Poo

These solutions assume isentropic flow and an outward moving shock.
Note that Equations (20), (21) and (22) can be written as:

Qs = K22y (24)
R
where k is an adjustable constant and U alternately takes the form u, €ln(p/p), and

S(u+ Tln(p/po)). This form is similar to that of Equation (19) with k set to —n and
c 1o Coo-
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CHAPTER 4
NUMERICAL IMPLEMENTATION

1-D IMPLEMENTATION

A special solution is constructed for the cells lying on the far field boundaries using
Equations (9) and (11). Here the flow is assumed to be isentropic which removes the necessity
of satisfying Equation (10). Simultaneous solution of Equations (9) and (11) produces:

Op _ (Q++Q-)
u (@ —Q)
ot 2pc “opc 1Y (26)

which allows p and u to be advanced. At the rj and 1; boundaries, Q; and Q_ respectively,
are evaluated from an empirical expression constructed from Equation (24):

2
=kﬂ9—(ku 1— kel (L)). 27
Q+ g u+( )eln = @n

Here k; and k, are adjustable parameters. The Q_ and Q. associated with the valid
characteristic at the 1} and 1 boundaries, respectively, are computed from:

A 2
Qi = —Ax [-a—p + pca—“] _ kepue (28)

or or r

Here k. is an adjustable parameter which would normally have a value of 0, -1 and -2 in
Cartesian, cylindrical and spherical meshes. - This parameter is introduced to allow tuning
the results in multi-dimensional problems.

Use of the isentropic condition in combination with the sound speed defines the change
in p, dp = dp/c? while first law of thermodynamics, Tds = de — (p/p?)dp = 0, specifies the
change in e. The final scheme for advancing the boundary points thus becomes:

n+1 =p n (Q?I- + QE)

n
P 2 At

: f)pn n

. ntl _ .0 (29)
pn+1 — pn I S & ( )
(c)?

entl — e +2 (Pn+1 +pn) ( il pn)

(b + ")
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Alternatively, if entropy changes were included, Equations (25) and (26) would be solved
in combination with Equation(10) to produce the new values of p, u and s. Using p and s,
the values of e and p can be determined from the equation of state.

Equations (29) are implemented at boundary points prior to executing each computational
step. The computational step is then completed at all points using the standard algorithm
which includes zero order extrapolation at the boundary points. After the completion of the
step, the results from Equations (29) are used to overwrite the boundary values.
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CHAPTER 5
NUMERICAL EXPERIMENTS IN 1-D

The above boundary conditions have been implemented in the DYSMAS/E code.b
Attention is focused on three different types of cases. The first are the truly nonreflective
examples where the amplitude of the incoming waves is zero. Here, with the appropriate
choice of constants, good results are expected. The second two examples deal with the
spherical explosions where the amplitude of the incoming waves is not zero. For these cases
numerical experiments will be conducted to determine the choice of constants in Equation
(27) which gives the best results. Two different types of problems are considered: a short
time scale problem of an exiting shock and a long time scale problem which terminates
following the first bubble minimum.

NONREFLECTING CASE

A planar Riemann problem is considered which consists of two initial states featuring
different pressure, density and energy. For simplicity, the velocity is assumed to be zero.
The parameters k¢, k, and % are set to zero. The first three Riemann problems feature
water only and differ by the extent of the property jumps between the two initial states.
Results for these cases are given in Figures 2, 3 and 4 which feature pressure ratios between
the two initial states of 6.82:1, 62.9:1 and 175:1, respectively. In each problem a shock
propagates to the right and an expansion to the left. The nonreflecting boundary conditions
should allow these waves to exit from the computational domain leaving the constant middle
state to the Riemann problem covering the computational domain. An examination of these
figures indicates that this is nominally true, although a distortion of the final profile is visible
in Figure 3, which featured the largest jump between the two initial states.

The final Riemann problem considered is shown in Figure 5 and consists of TNT and
water initial states with a pressure ratio of 7225:1. The water is located on the right side
of the figure and air at the left. A significant error is induced by the shock as it exits the
right boundary while the correct constant condition is recovered at the left boundary as the
expansion exits the left side of the computational domain.

The results achieved with these nonreflecting cases are in good agreement with the actual
solution, provided that the strength of the exiting shock is not too large. Errors for strong
shocks likely arise from several sources. As derived above, the FFBC assume isentropic
flow which is not realistic in these situations. Also, the shock profile contains spurious
oscillations which may contaminate the outflow solution. Numerical experiments indicate
that increases in the DYSMAS/E FCT parameter values which reduce these oscillations also
reduce the FFBC error.
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SPHERICAL SHOCKS

The explosion of a spherical TNT charge in a uniform water environment is modeled
in spherical coordinates. The TNT is described using a JWL equation of state while the
water is modeled using a modified Tait equation of state.5 The TNT is assumed to combust
instantaneously and the initial state corresponds to an energy of 4.2814(10'%) ergs/gm and
density of 1.63 gm/cc.

The spherical explosion problem does not give rise to a nonreflecting boundary and it
is necessary to prescribe the incoming information along the characteristic which originates
outside of the computational domain. This is accomplished using Equation (27). The task
here is to select optimum values for the two parameters in this equation, k; and k.. The
value of k, was fixed at —2. To accomplish this, tests were conducted on a trial, uniform
mesh with 300 points. These results were compared to a reference solution on a stretched
mesh with 1000 points. The outer boundary of the reference mesh was far enough from the
explosion to avoid being influenced of the explosion. The pressure and impulse time history
for a point on the trial mesh is compared to the reference mesh results using difference
values of k; and ky.

Figures 6 to 11 contain the results of the comparisons between the trial and reference
mesh results for k, values of 0, .5 and 1, respectively. Each figure considers a specific point
and illustrates the influence on pressure and impulse of varying k; . Figures 6 to 8 provide
results for a depth of 103.66m while Figures 9 to 11 illustrate the solutions at 15.26m. In
each figure the reference solution produces a pressure trace which decays smoothly from the
peak value produced by the passing initial explosion shock. The trial pressure trace deviates
from the reference trace near 17 msecs, denoting the arrival of the disturbance created when
the explosion shock reached the mesh boundary. For k, = 1, this initial discrepancy can
be minimized by selecting k; = .5; however, this depresses pressures at t > 30 msec. This
under-prediction at longer times results in larger impulse errors. On the other hand, at &, =0,
the trial pressure trace closely matches the reference value at &; = 1.

To test the general effectiveness of the values, k; = 1, k, = 0, two additional test series
have been conducted. In the first, the trial meshes are expanded to included the sizes 200,
400, and 500, while the points selected for comparison are increased to 6. Results are shown
in Figures 12 to 16 for points 50, 100, 200, 300, and 400, respectively, at the depths of
15.24m and 103.6m. An examination of these results indicates that there is no discernible
difference between the pressures and impulses on the trial and reference meshes.

The second series was accomplished on a series of four stretched meshes and consists of
computations at 15.24m and 103.6m. The largest mesh served as a reference mesh while the
other three are truncated versions of it which allowed the disturbance created by the shock
at the outer boundary to reach test points prior to the end of the calculation. Results are
presented in Figures 17 and 18 for trial grid points 40 and 80. Deviation between the trial
and reference pressures are visible on the smallest mesh, grid A, when the shock disturbance
first reaches the test points. However, this discrepancy disappears quickly. The disagreement
between grids B and C results and those on the reference mesh, grid D, are very insignificant.
A description of the four meshes used in Figures 17 and 18 is given in Table 1.

10
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The tests conducted in this section indicate that use of Equation. 27) with kb, =1, %k, =
0, yields a FFBC which introduces minimal errors into calculation containing an exiting
spherical shock. In the case of a uniform mesh, significant distortions are eliminated. The
errors introduced by the FFBC are visible on grid A of the stretched mesh case. However,
this mesh was very small and the distortion in the pressure was mainly visible immediately
following the arrival the reflected disturbance created at the outer boundary by the outgoing
shock.

PULSATING BUBBLE

The final class of problem is the pulsating bubble which has a time duration greatly in
excess of the shock problem. As in the preceding section, this problem is initiated by a
spherical explosion. However, the focus is on later times, long after the shock has exited
from the computational domain. The bubble created by the explosion expands and eventually
contracts, forming a new bubble minimum. The expansion-contraction process continues for
additional cycles with diminishing changes in the bubble radius.

The pulsating bubble is a case which does not admit a truly nonreflecting boundary
condition and it is necessary to prescribe the missing characteristic information at the outflow
boundary. However, this problem is more difficult than the explosion shock; during the
expansion part of the cycle the flow is out of the computational domain, while during the
contraction phase it is inwards. Furthermore, the longer duration of the problem provides an
extended period for boundary error build up.

To test the and tune the FFBC, six cases have been constructed featuring different depths
(15.24m and 103.6m) and bubble periods ( ~.150 second and ~.350 second). For each case a
series of four meshes was constructed, the largest of which placed the boundary far enough
away to prevent the reflected disturbance from the exiting shock from arriving back until late
in the problem. This mesh serves as the reference mesh, while the remaining three meshes
constituted the trial cases.

The bubble radius histories for these six cases are given in Figures 19 to 24, along
with pressure and impulse histories at two points near the bubble. In addition, Tables 2 to 5
provide the detailed definition of each mesh sequence. The right hand columns in these tables
indicates the ratio of the time required for the shock to reach the edge of the computational
mesh to the length of the bubble pulse. For values of this ratio less than .5, the exiting
shock disturbance has time to reflect back to the bubble and influence the calculation during
the first bubble pulse. Successful performance of the FFBC if thus associated with a bubble
radius history which is invariant to changes with mesh size.

A comparison of the results exhibited in Figures 19 to 24 are mixed. For the short
‘duration case at the 103.6m depth (Figure 19), excellent performance of the FFBC is evident.
This performance degrades with longer periods and decreasing depth as shown in Figure 23.
It is hypothesized that this decrease in performance is attributable to two factors. At shallower
depths the ratio of the explosive initial pressure to the ambient water pressure is greater which
produces a stronger exiting shock. At the far field boundary, the exiting shock at 15.24m

11
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is 75 times stronger than that at 103.6m. Here the strength of the shock is taken to be the
ratio of the pressure jump across the shock.

The longer period calculations require a larger number of integration steps, enhancing
the opportunity for error buildup. To check the influence of the number of integration steps
on the performance of the FFBC, the long period runs at 15.24m and 103.6m have been
repeated on a coarser mesh, which decreases the number of integrations steps. As can be
seen by comparing Figures 20 and 21 and Figures 23 and 24, the error on the coarser mesh
is reduced noticeably in both cases. '

12
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CHAPTER 6
EXTENSION TO MULTIPLE DIMENSIONS

APPROACH

Two different approaches are considered for extending the previous developed 1-D FFBC
to two- and three-dimensions. The simplest is to apply the previously developed 1-D analysis
to multiply dimensioned cases. The assumption here is that the flow components tangent
to the far field boundary can neglected. An alternative is to include the difference terms
associated with the tangential components. This leads to a more complete method, but one
with additional complexity and one which requires additional far field boundary information
in the case of subsonic inflow. For 2-D subsonic inflow, assuming isentropic flow as was
done in the 1-D case, two characteristic relations must be replaced with empirical relations.
If the isentropic assumption is dropped, three relations are necessary. Moving to the 3-D
case adds an additional invalid characteristic relation. The new characteristic relations which
must be replaced in multidimensional flow concem the derivatives of the tangent velocity
components.

The main disadvantage to applying the 1-D FFBC to multiple dimensions is the loss of
the ability to treat the truly nonreflective case. A planar, constant strength shock moving
obliquely through a three dimensional Cartesian mesh is an example of such a situation.
However, this type of problem is not of particular interest here.

The approach taken here is to apply the 1-D FFBC to two and three dimensional
problems. Test cases, similar to those used in the 1-D situation, are used to select appropriate
values of k; and k, for two and three dimensional problems. Attention is restricted to the
shock and bubble pulse problems which were examined in the 1-D case. Where possible,
the same mesh applied in 1-D is applied to each of the dimensions of the multidimensional
problem. The parameter %, which appears in Equation (28) is set at —2, the value associated
with spherical symmetry. The purpose of using this value is to capture the spherical symmetry
associated with explosion problems on other types of meshes. Numerical experiments suggest
that %, has little influence on the performance of FFBC.

SPHERICAL SHOCK IN 2-D (CYLINDRICAL COORDINATES)

The optimum values for k; and k, are selected by conducting numerical experiments on a
trial, uniform mesh with 200X200 points. These results were compared to a reference solution
on a stretched mesh with 400X400 points. The outer boundary of the reference mesh was
located far enough from the explosion to avoid being influenced of the explosion shock prior
to the end of the computation. To minimize the extent of the meshes in these calculations,
symmetry is assumed about the y=0 plane, and the wall boundary condition is applied here.

13
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The pressure and impulse history for points on the trial mesh are compared to the reference
mesh results for different values of k; and k, in Figures 25 to 28. An examination of these
figures indicates that best results are obtained for k; = .875 and k, = 0. ’

To gain a broader view of the merits of this boundary condition in uniform flow, the FFBC
is to trial meshes with k; = .875 and k, = 0. The trial meshes were uniform with 200X200,
300X300 and 400X400 cells while the reference mesh contained 400X400 stretched cells.
Pressure and impulse histories on the trial meshes are compared to the reference results
in Figures 29 to 32. Small deviations in the computed pressure are visible in each case
following the arrival of the reflected disturbance from the exiting shock. In all cases the
reference and trial impulses are very close to one another.

The final 2-D shock example uses a sequence of four stretched meshes. The mesh point
distribution in each direction corresponds to those shown in Table 1, for the 1-D case, with
the finest mesh serving as the reference mesh. The results for this case are shown at the depths
of 301.6m and 15.24m in Figures 33, 34, and 35, covering mesh points (40,1), (80,1), and
(100,1), respectively. The trial radius, pressure and impulse histories are not distinguishable
from the reference trace except on the smallest mesh where small excursions can be seen.

The 2-D shock examples demonstrate excellent performance of the FFBC for the .
cylindrically symmetric case. The uniform mesh results are not quite as good as in the
1-D case; however, comparable performance is seen in the stretched mesh example (see
Figures 17, 18, 33 and 34).

PULSATING BUBBLE IN 2-D (CYLINDRICAL COORDINATES)

To test the FFBC for the 2-D pulsating bubble, four of the cases completed in the 1-D
tests have been revisited. The bubble radius history for these six cases are given in Figures
36 to 39, along with pressure and impulse histories at two points near the bubble. Tables
2 to 5 provide the detailed definition of each mesh sequences used in each case. The same
point distribution was used in each direction and a symmetry plane was located at the x=0
and y=0 planes.

The final case considered includes the influence of gravity and features the application
of the FFBC at the side boundaries. The radial mesh sequence used is shown in Table 2
while the vertical mesh is fixed. It consists of solid wall conditions above and below the
computational domain and contains the three block of 91, 39 and 43 cells, with stretching
ratios of 1.0, 1.02 and 1.14 respectively. The bottom wall condition prevents a downward
flow of the fluid due to the hydrostatic pressure while the top wall simulates an obstacle. The
results of this calculation are shown in Figure 40 for a deep, short period explosion bubble.
Good agreement is obtained among calculations on all four meshes, similar to that achieved
in Figure 36 for the radially symmetric, 2-D bubble. _

In general, the FFBC applied to the 2-D pulsating bubble exhibits improved performance
over the 1-D case. In the 2-D situation, the explosion shock does not arrive simultaneously
at the boundaries which are located at varying distances from the explosion. Additionally,
the boundaries are generally not perpendicular to the mesh, which prevents the shock, when
it arrives at the far field boundary, from being reflected back to the bubble.

14
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SPHERICAL SHOCK IN 3-D (CARTESIAN COORDINATES)

The performance of the FFBC is tested in three dimensions using a 61X61X61 uniform
mesh. The mesh size and cell distribution in each direction is the same as that used in 1-D
and 2-D (see Mesh A in Figures 17, 18, 34 and 35). Due to the computational resources
required for 3-D calculations, the results are limited to this case.

An investigation of the influence of k; has been carried out and results are shown in
Figures 41 and 42 at depths of 15.24m and 103.6m, respectively. Based on the experience
in the 1-D and 2-D cases k, is fixed at 0. The reference curve in these figures is taken from
the 2-D reference results of Figures 25 to 28. An examination of these curves indicates an
optimal value of k; = .5. For this k; setting, the agreement between the trial and reference
curve is similar to that obtained in the 1-D and 2-D cases.
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CHAPTER 7
SUMMARY AND CONCLUSIONS

This report has investigated a far field boundary condition (FFBC) designed to suppress
reflections from the exiting waves, including shocks and expansions, in the case of a spherical
explosion. Under such circumstances, the outgoing wave generates an incoming wave and the
task of creating a far field boundary condition reduces to constructing an empirical method to
supply the missing incoming wave information. The general form for this condition is based
on characteristic analysis and uses a nonreflecting formulation and asymptotic analysis to
derive a general equation which contains adjustable parameters (see Equations (27) and (28)
). This approach has been implemented in the DYSMAS/E hydrocode and the adjustable
parameters have been determined by numerical experiments in one, two and three dimensions.
Optimal values of these parameters are shown in Table 6. The resulting formulation is applied
to the spherical shock problem in one and multiple dimensions. In the latter case, flow tangent
to the far field boundaries is neglected, and the 1-D analysis is applied at the boundaries.
The performance of this method is assessed for the short term shock phase and for the long
term pulsating bubble problem.

For the short-term shock problem, the far field boundary condition yielded excellent
results. This was determined by comparing pressure and impulse histories at selected points
on meshes of varying size. The computations performed on the largest mesh placed the
boundary far enough from the explosion to eliminate the boundary effect. The results of
these comparisons are shown Figures 12 to 18, 29 to 35, 42, and 43.

Within the DYSMAS/E hydrocode, the alternatives to the far field boundary conditions
are reflection (wall), nonreflection with damping and nonreflection without damping. The
consequences of applying these conditions are illustrated in Figure 43 while the FFBC
results for the same problem are shown in Figure 18. As anticipated, the reflection
boundary condition strongly reflects the shock and produces distortions which overwhelm the
desired decaying pressure profiles. The nonreflection option without damping results in an

underprediction of the pressure following the arrival of the disturbance from the exiting shock.
Inclusion of damping highly distorts the pressure traces and in many cases produces results
similar to those associated with the wall boundary conditions. These results indicate that
the new far field boundary condition represents an enhancement over existing DYSMAS/E
options. The FFBC minimizes the error introduced by shock reflection at the outer boundary.

In the case of the long term pulsating bubble, results were mixed. The FFBC performed
well for deep explosions with short periods (Figure 19). At shallow depths and for cases with
a longer period (Figure 21), the accuracy of the FFBC decreases. Under these conditions,
more integration steps were required and it is hypothesized that this increases the opportunity
for error buildup at the far field boundaries. Decreasing the depth increases the strength of the
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explosion shock (i.e. pressure jump across the shock) which increases the far field boundary
condition error. Similar FFBC performance trends were evident in 2-D, Figures 35 to 38;
however, the results were generally better. This improvement can likely be traced to the fact
that in 2-D, the waves generated by the explosion bubble, including the shock, do not arrive .
at boundaries simultaneously and are not all reflected back to the bubble.

Figures 43 illustrates application of existing DYSMAS/E boundary conditions to the deep,
- short bubble problem, while the FFBC results for the same case are given in Figure 19. The
new FFBC clearly offers improved performance in this case. However, as is illustrated by
comparing Figure 44 to Figures 20 and 22, degradation in performance of the FFBC at small
depths and for problems with an extended bubble period yields results which are similar in
quality to the existing DYSMAS/E nonreflecting, damped boundary condition.

An alternative strategy for minimizing mesh size is the use a highly stretched mesh near
the outer boundary. This approach, which is examined in Appendix C, yields results which
degrade as the maximum mesh stretching ratio increases. In particular, the bubble period
and peak pulse pressures are impacted. Accordingly, minimizing the mesh size for a bubble
pulse problem requires use of the FFBC applied to a judiciously truncated mesh, as well as
the selection of a mesh with a stretching factor not exceeding 1.15. The results of Figures
19 to 24 and 36 to 40 serve as a guide for selecting the mesh trunctation.
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GLOSSARY

¢ — speed of sound

g — acceleration due to gravity

k. — adjustable constant in Equation (28).

k; and k, — adjustable constants in Equation (27)

K — (&
4
I1— [pdr

1 — loeft eigenvectors
P — pressure
r — spherical radius
1,2 — cylindrical coordinates
s — entropy
t — time
x,y,z — Cartesian coordinates :
Ti — Time at which the disturbance created by exiting shock to amrives back at the
explosion bubble.
Tr — Time required for the shock to reach the far field boundary.
Tp — length of the bubble period
Tt — length of the computation
u — velocity in the r or x direction
A — eigenvalue
p — density
subscripts
i — cell index
0 — associated with the central (streamline) characteristic
-+ — associated with the right running characteristic
— — associated with the left running characteristic
oo — ambient condition
superscripts
n — step number
— average value
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FIGURE 1. 1-D CHARACTERISTIC EQUATIONS AND DIRECTIONS
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FIGURE 19. COMPARISON OF 1-D SPHERICAL BUBBLE PERIODS USING THE
MESH SEQUENCE OF TABLE 2 FOR THE SHORT PERIOD BUBBLE
AT A DEPTH OF 103.6m, COMPUTED WITH k; = —1, k, = 0, k, = —2
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FIGURE 20. COMPARISON OF 1-D SPHERICAL BUBBLE PERIODS USING THE
MESH SEQUENCE OF TABLE 3 FOR THE LONG PERIOD BUBBLE AT
A DEPTH OF 103.6m, COMPUTED WITH k; = -1, k, =0, k. = =2
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FIGURE 21. COMPARISON OF 1-D SPHERICAL BUBBLE PERIODS USING THE
MESH SEQUENCE OF TABLE 4 FOR THE LONG PERIOD BUBBLE AT
A DEPTH OF 103.6m, COMPUTED WITH k; = —1, k, =0, ke = -2
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FIGURE 22. COMPARISON OF 1-D SPHERICAL BUBBLE PERIODS USING THE
MESH SEQUENCE OF TABLE 2 FOR THE SHORT PERIOD BUBBLE
AT A DEPTH OF 15.24m, COMPUTED WITH k; = -1, k; =0, k. = =2
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FIGURE 23. COMPARISON OF 1-D SPHERICAL BUBBLE PERIODS USING THE
MESH SEQUENCE OF TABLE 3 FOR THE LONG PERIOD BUBBLE AT
A DEPTH OF 15.24m, COMPUTED WITH k; = -1, k; =0, kc = =2
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FIGURE 24. COMPARISON OF 1-D SPHERICAL BUBBLE PERIODS USING THE
MESH SEQUENCE OF TABLE 5 FOR THE LONG PERIOD BUBBLE AT
A DEPTH OF 15.24m, COMPUTED WITH k; = -1, k; =0, ke = -2
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FIGURE 25. INFLUENCE OF k; AND k, ON THE 2-D CYLINDRICAL
PRESSURE AND IMPULSE AT POINT (50,1) OF A 200X200
CELL UNIFORM MESH AT A DEPTH OF 103.6m
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FIGURE 26. INFLUENCE OF k; AND k, ON THE 2-D CYLINDRICAL
PRESSURE AND IMPULSE AT POINT (100,1) OF A 200X200
CELL UNIFORM MESH AT A DEPTH OF 103.6m
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FIGURE 27. INFLUENCE OF k; AND k, ON THE 2-D CYLINDRICAL
PRESSURE AND IMPULSE AT POINT (50,1) OF A 200X200
CELL UNIFORM MESH AT A DEPTH OF 15.24m
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FIGURE 28. INFLUENCE OF k; AND k, ON THE 2-D CYLINDRICAL
PRESSURE AND IMPULSE AT POINT (100,1) OF A 200X200
CELL UNIFORM MESH AT A DEPTH OF 15.24m
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FIGURE 29. COMPARISON OF THE 2-D CYLINDRICAL REFERENCE AND TRIAL PRESSURE AND
IMPULSE HIST'ORIES AT POINT (50,1), DEPTHS 15.24m AND 103.66m, USING DIFFERENT
TRIAL MESHES, COMPUTED WITH k; = —.85, ky = 0, ke = -2
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FIGURE 30. COMPARISON OF THE 2-D CYLINDRICAL REFERENCE AND TRIAL PRESSURE AND
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FIGURE 31. COMPARISON OF THE 2-D CYLINDRICAL REFERENCE AND TRIAL PRESSURE AND
IMPULSE HISTORIES AT POINT (200,1), DEPTHS 15.24m AND 103.66m, USING DIFFERENT
TRIAL MESHES, COMPUTED WITH k; = —.85, k; = 0, ke = —2

0Z/v6-4L/AAOMSN



15

2.5e+07

2e+07

1.5e+07

le+07

P (d/cm**2)

5e+06

160000
140000
120000
100000
80000
60000
40000
20000
0

I (d-sec/cm**2)

DEPTH = 15.24m

] 1 I
Reference

400 cell mesh

0 10 20 30 40

Time (msecs)

DEPTH = 15.24m

50

60

&
="
<
red

Reference
400 cell mesh

0 10 20 30 40

Time (msecs)

50

60

P (d/cm**2)

I (d-sec/cm**2)

2.5e407

2e+07

1.5e+07

le+07

5e+06

700000
600000
500000
400000
300000
200000
100000

0

DEPTH = 103.6m

)

[} 1 T
Reference

400 cell mesh ===

= AP =75 C
1 [ 1 1 t
0 10 20 30 40 50 60
Time (msecs)
DEPTH = 103.6m
] 1 1 1 |
~ Reference -_—
400 cell mesh ===
] 1 1 1 i )
0 10 20 30 40 50 60

Time (msecs)
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MESH SEQUENCE OF TABLE 3 AT A DEPTH OF 103.6m, LONG
PERIOD CASE, COMPUTED WITH k; = —.85, ky =0, ko = —2.
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